Local optical control of ferromagnetism and chemical potential in a topological insulator.
نویسندگان
چکیده
Many proposed experiments involving topological insulators (TIs) require spatial control over time-reversal symmetry and chemical potential. We demonstrate reconfigurable micron-scale optical control of both magnetization (which breaks time-reversal symmetry) and chemical potential in ferromagnetic thin films of Cr-(Bi,Sb)2Te3 grown on SrTiO3 By optically modulating the coercivity of the films, we write and erase arbitrary patterns in their remanent magnetization, which we then image with Kerr microscopy. Additionally, by optically manipulating a space charge layer in the underlying SrTiO3 substrates, we control the local chemical potential of the films. This optical gating effect allows us to write and erase p-n junctions in the films, which we study with photocurrent microscopy. Both effects are persistent and may be patterned and imaged independently on a few-micron scale. Dynamic optical control over both magnetization and chemical potential of a TI may be useful in efforts to understand and control the edge states predicted at magnetic domain walls in quantum anomalous Hall insulators.
منابع مشابه
Optical properties of III-Mn-V ferromagnetic semiconductors
We review the first decade of extensive optical studies of ferromagnetic, III-Mn-V diluted magnetic semiconductors. Mn introduces holes and local moments to the III–V host, which can result in carrier mediated ferromagnetism in these disordered semiconductors. Spectroscopic experiments provide direct access to the strength and nature of the exchange between holes and local moments; the degree o...
متن کاملPersistent optical gating of a topological insulator
The spin-polarized surface states of topological insulators (TIs) are attractive for applications in spintronics and quantum computing. A central challenge with these materials is to reliably tune the chemical potential of their electrons with respect to the Dirac point and the bulk bands. We demonstrate persistent, bidirectional optical control of the chemical potential of (Bi,Sb)2Te3 thin fil...
متن کاملFerromagnetism and Metal–Insulator Transitions in Correlated Electron Systems with Alloy Disorder
Alloy disorder can affect ferromagnetism and metal–insulator transitions of correlated lattice fermion systems in subtle and often unexpected ways. Solving the Hubbard model and the periodic Anderson model within dynamical mean-field theory we show that alloy disorder can increase the Curie temperature of a non-disordered system, and also yields novel Mott or Kondo insulators at fractional elec...
متن کاملElectrically Tunable Magnetism in Magnetic Topological Insulators.
The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hen...
متن کاملDevelopment of ferromagnetism in the doped topological insulator Bi2−xMnxTe3
The development of ferromagnetism in Mn-doped Bi2Te3 is characterized through measurements on a series of single crystals with different Mn content. Scanning tunneling microscopy analysis shows that the Mn substitutes on the Bi sites, forming compounds of the type Bi2−xMnxTe3, and that the Mn substitutions are randomly distributed, not clustered. Mn doping first gives rise to local magnetic mom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 39 شماره
صفحات -
تاریخ انتشار 2017